Outstanding Guidance for Youth

www.ogyacademy.com

CONTINUITY

A real function f is said to be continuous at a real constant 'a' if

i) f(a) is defined,

ii) $\lim_{x \to a} f(x)$ exits, and

iii) $\lim_{x\to a} f(x) = f(a)$.

Otherwise the function is said to be discontinuous function.

Everywhere continuous function: A function f is said to be everywhere continuous if it is continuous on the entire real line $-\infty$ to $+\infty$.

Note1 : A real function f is said to be continuous, if it continuous at each point of its domain.

Note2: A function, which is not continuous, is known as discontinuous function.

Note3: If a function consists of bracket function, modulus function and/or defined by more than one rule, then

 $\lim_{x\to a^{-}} f(x) \text{ and } \lim_{x\to a^{+}} f(x) \text{ are to be evaluated separately. If } \lim_{x\to a^{-}} f(x) = \lim_{x\to a^{+}} f(x) \text{ , then find } f(a) \text{ .}$

If $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = f(a)$, then f is continuous and if $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) \neq f(a)$, then f is not

continuous.

Fundamental theorems on continuous functions:

Let f(x) and g(x) be two continuous functions on their common domain D and let k be a real number.

i. kf is continuous

ii. f + g is continuous

iii. f - g is continuous

iv. fg is continuous

v. $\frac{f}{g}$ is continuous

vi. $\frac{1}{g}$ is continuous

vii. f^n , $n \in N$, is continuous

Common functions which are continuous in their domains:

- a. Every constant function is continuous everywhere.
- b. An identity function, f(x) = x, is continuous everywhere.
- c. The modulus function is continuous everywhere.
- d. The exponential function is continuous everywhere.
- e. The logarithmic function is continuous everywhere.
- f. The polynomial function is continuous everywhere.
- g. The rational function is continuous everywhere.
- h. The trigonometric function is continuous everywhere.
- i. The inverse trigonometric function is continuous everywhere.
- j. The composition of two function is continuous everywhere.

Discontinuous functions

A function f is said to be discontinuous at a point x = a of its domain D if it is not continuous at the point a. The point x = a is called the point of discontinuity. It may arise:

- a. If $\lim_{x \to a^+} f(x)$ or $\lim_{x \to a^-} f(x)$ of both may not exist
- b. If $\lim_{x\to a^+} f(x)$ as well as $\lim_{x\to a^-} f(x)$ may exist, but are unequal.
- c. If $\lim_{x\to a^+} f(x)$ as well as $\lim_{x\to a^-} f(x)$ both may exist, but either of the two or both may not be equal to f(a). or in simply we can say that:

A function is said to be discontinuous if:

Case (i) : $\lim_{x \to a^{-}} f(x) \neq \lim_{x \to a^{+}} f(x)$

Case (ii) : $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$ and is not equal to $\lim_{x \to a} f(x)$

Case (iii) : $\lim_{x \to a} f(x) \neq f(a)$

Removable discontinuity: A function f is said to be removable discontinuity

if $\lim_{x\to a} f(x)$ exists, i.e., $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x)$ but it is not equal to f(a).

i.e., .,
$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) \neq f(a)$$

Discontinuity of the first kind: A function f is said to be the discontinuity of the first kind at x = a it $\lim_{x \to a^{-}} f(x)$ and $\lim_{x \to a^{+}} f(x)$ both exist but are not equal.

Discontinuity of the second kind: A function f is said to be the discontinuity of the second kind at x = a if neither $\lim_{x \to a^{-}} f(x)$ nor $\lim_{x \to a^{+}} f(x)$ exist.

WORKING RULE

- If the given function f(x) contains modulus function, bracket function and/or defined by more than one rule, then lim f(x) nor lim f(x) are to be evaluated separately, otherwise lim f(x) is evaluated directly. x→a⁻ x→a⁺
- 2. If $\lim_{x\to a^-} f(x) \neq \lim_{x\to a^+} f(x)$, then $\lim_{x\to a} f(x)$ does not exist and f is said to be a discontinuous function.
- 3. If $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x)$, then $\lim_{x\to a} f(x)$ exists and is said to be continuous at x=a.

PRACTICE EXAMPLES:

1. If $f(x) = \begin{cases} \frac{x}{x}, & x \neq 0 \\ \sin 3x \end{cases}$ is continuous at x=0, then write the value of k.

If f(x) is continuous at x=0, then
$$k = \lim_{x \to 0} \frac{x}{\sin 3x} = \lim_{x \to 0} \frac{3x}{\sin 3x} \times \frac{1}{3} = \frac{1}{3} \times \lim_{x \to 0} \frac{3x}{\sin 3x} = \frac{1}{3} \times 1 = \frac{1}{3}$$

2. Show that $f(x) = x^3$ is continuous at x = 2.

If
$$f(x)$$
 is continuous at $x = 2$ then $\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = f(2)$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} f(x) = f(2)$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(2+h)^{3} = \lim_{x \to 2^{+}} \left(8 - 12h + 6h^{2} - h^{3}\right) = 8$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} f(2+h)^{3} = \lim_{x \to 2^{+}} \left(8 + 12h + 6h^{2} + h^{3}\right) = 8$$

$$\lim_{x \to 2^{+}} f(2) = 2^{3} = 8. \text{ Hence } f(x) \text{ is continuous at } x = 2.$$

Determine the value of k for which the following function is continuous at x = 3cm.

()
$$\begin{cases} x^2 - 9 \\ x - 3 \end{cases}, x \neq 3 .f$$

$$\begin{cases} k \\ x = 3 \end{cases}$$

Since f(x) is continuous at x = 3cm $\lim_{x \to 3} f(x) = f(3)$

$$\lim_{x \to 3} f(x) = f(3)$$

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} (x + 3) = 3 + 3 = 6$$

$$f(3) = k \Rightarrow k = 6$$

4. Show that the function $f(x) = \sqrt{\left|\frac{e^{\frac{1}{x}} - 1}{e^{x} + 1}\right|}$, $x \neq 0$ is discontinuous at x = 0. If f(x) is continuous at x = 0 then $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$

$$\lim_{x \to 0^{+}} f(x) = \lim_{h \to 0^{+}} f(0+h) = \lim_{h \to 0^{+}} f(h) = \lim_{h \to 0^{+}} \left| \frac{e^{\frac{1}{h}} \left| 1 - e^{\frac{1}{h}} \right|}{\left| \frac{1}{e^{h}} \right|} \right| = \lim_{h \to 0^{+}} \left| \frac{1 - e^{\frac{1}{h}}}{\left| 1 - e^{\frac{1}{h}} \right|} \right| = 1$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{h \to 0^{+}} f(0 - h) = \lim_{h \to 0^{+}} f(-h) = \lim_{h \to 0^{+}} \left| \frac{e^{-\frac{1}{h}} - 1}{\frac{1}{e^{h}}} \right| = \lim_{h \to 0^{+}} \left| \frac{\frac{1}{e^{h}} - 1}{e^{h}} \right| = -1$$

Thus
$$\lim_{x \to 0^{-}} f(x) \neq \lim_{x \to 0^{+}} f(x)$$

Hence f(x) is discontinuous at x = 0.

5. Consider the function $f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x}, & \text{if } x \neq \frac{\pi}{2} \\ 3, & \text{if } x = \frac{\pi}{2} \end{cases}$ at $x = \frac{\pi}{2}$. Find the value of k.

$$\lim_{x \to \frac{\pi}{2}} \left(\frac{k \cos x}{\pi - 2x} \right)$$

$$put \ x = \frac{\pi}{2} + h \quad As \ x \to \frac{\pi}{2}, \ h \to 0$$

$$\therefore \lim_{x \to \infty} \left(\frac{k \cos x}{\pi - 2x} \right) = \lim_{h \to 0} \left(\frac{k \cos \left(\frac{\pi}{2} + h \right)}{\pi - \left(\frac{\pi}{2} + h \right)} \right) = \frac{\left(k \times -\sinh \right)}{\lim_{h \to 0} \left(\pi - \pi - 2h \right)} = \frac{-k}{-2} \times \lim_{h \to 0} \left(\frac{\sinh h}{h} \right) = \frac{k}{2}$$

$$f\left(\frac{\pi}{2} \right) = 3$$

Since the function is continuous at $x = \frac{\pi}{2}$

$$\frac{k}{2} = 3 \Longrightarrow k = 6$$

For Free Career Guidance : +918891314091