SECOND YEAR HIGHER SECONDARY EXAMINATION MARCH 2020

PART III

SUBJECT PHYSICS

CODE SY-24

TOTAL SCORE – 60

Qn.no	Sub qn	Answer key	Score	Total
1		(c) doubled		1
2		(a) Straight line		1
3		(a)1000V		1
4		(a) light ray is travelling from denser medium to rarer medium		1
5		(b)total internal reflection		1
6		(b)not different from		1
7	(a)	Outstanding Guidance for Youth P F=qE Correct marking of direction / equation F=qE (score 1 for any part)	1	2
	(b)	$\tau = \mathbf{p} \mathbf{x} \mathbf{E}$ or $\tau = \mathbf{p} \mathbf{E} \sin \theta$	1	
8	(a)	$\oint B. dl = \mu_0 I$ or defintion	1 1/2	2

	(b)	OR If any part of either (a) or(b) is cor	rect give 1 $\frac{1}{2}$ score	1/2			
9		Non uniform field OR any relate	ed attempt		2		
		$B = \frac{\mu_0}{4\pi} \frac{m}{r^3} = 10^{-7} x_{0.5^3}^{0.4} = 3.2 x 10^{-7}$	T (2 score)				
		OR					
10		$B = \frac{\mu_0}{4\pi} \frac{2m}{r^3} = 6.4 \times 10^{-7} \text{ T}$	(2 score)		2		
		Any one equation 1 mark solution	1 mark unit not necessary				
		(if 2 equations are correct give 2 r					
	(a)	n= 1.47		1 1/2			
	(b)	No	U I	, 2			
11		AGRO	ıdemy	1/2	1/2		
		(if any one part of (a) or (t) is corre	nce for Youth ct give 1 72 score)	72			
12		Blue scatters more / By Rayleig	h's scattering law /		2		
12		Blue has shorter wavelength / 1		2			
		A	В				
		i Nuclear fission	Generally possible for				
			nuclei with high atomic				
13			number		2		
		ii Nuclear fussion	Nuclei with low atomic				
			number				
		iii Transition between	Hydrogen spectrum				
		atomic energy levels					

		iv Electron emission from Beta decay		
		nucleus		
14	(a)	OR Rectifier circuit	1	
	(b)		1	2
	(a)	Resistor may be included A- ground wave, B – space wave ,C- sky wave	11/	
	. ,		1 1/2	
15	(b)	Ionosphere cannot reflect these signals / high frequency / small wavelength / penetrate through ionosphere / any related answer	1/2	2
	(a)	Gadeniy		
	(a)	Outstanding Guid Hee for Youth	1	
16		Gaussian surface or direction 1 score		3
	(b)	$\oint E \cdot ds = \frac{q}{\epsilon_0} / \text{ Gauss's law 1 score}$ $E \times 2\pi r l = \lambda \frac{l}{\epsilon_0} \qquad (\frac{1}{2} \text{ score})$ $E = \frac{\lambda}{2\pi \epsilon_0 r} \qquad (\frac{1}{2} \text{ score})$	2	
17	(a)	Figure 1 – parallel, figure 2 - series	1	3

	(b)	Figure 1 – parallel	1/2	
	(c)	Derivation of parallel combination	1 1/2	
	(a)	Any one law or equation 1 score(1+1)	2	
	(b)	Both proportional to square of respective field strength		
		OR		
18		Any equation of energy $\frac{1}{2}cv^2$ or $\frac{1}{2}Li^2$	1	3
		OR		
		energy density $\frac{\epsilon_0 E^2}{2}$ or $\frac{B^2}{2\mu_0}$		
		(If (b) part alone is correct give $1 \frac{1}{2}$ score)		
	(a)	$E_x = E_0 \sin(kz - \omega t)$	1	
		$B_y = B_0 \sin(kz - \omega t)$	1	
	(b)	Radio waves are produced by accelerated motion of charges		
19		/ Radio waves are used for radic, \(\Gamma \) or communication		3
		system / micro waves are produced by special vacuum tubes	2	
		/ any one use like oven or aircraft control		
		(any one answer above 1 score) Outstanding Guidance for Youth		
	(a)	Object distance - OO , Lyage distance - OQ_1	1	
	(b)	$\frac{1}{u} - \frac{1}{v} = \frac{1}{f} (1 \text{ score})$		
		$1-\frac{v}{u}=\frac{v}{f}$		
20		$m=1+\frac{D}{f}$ (1 score)	2	3
		OR		
		$m = \frac{D}{f} / m = \frac{v}{u} $ (1 score)		
21		Lyman,Balmer,Paschen		3
	(a)	i) 176	1	
		ii) 72	1	
22	(b)	Statement or equation of radioactive decay law	1	3
	(c)	$T_h = 0.693 \ T_m \ \text{OR} \ T_h = T_m \ln 2$	1	
		T_h - half life, T_m - mean life		

	(a)	Definition of modulation / figure showing modulation	1	
23	(b)	Any two reasons like i) Power is inversely proportional to		2
		square of wavelength ii) Insufficient antena length	2	3
		iii) Mixing up of signals ,etc		
	(a)	Farad	1/2	
	(b)	(Both series and parallel can be considered as in english and		
		malayalam version of question)	1/2	
		In series $C = \frac{12}{13} pF$ / In parallel $C = 9 pF$	_	
24	(c)	In series $Q = Cv = \frac{12}{13} \times 10^{-12} \times 100 = \frac{12}{13} \times 10^{-10} \text{ F}$		4
		OR		
		In parallel $Q_1 = C_1 v = 2x \ 10^{-10} F$, $Q_2 = 3x \ 10^{-10} F$,	3	
		$Q_3 = 4x \ 10^{-10} \text{F}$		
		$(1 \frac{1}{2})$ may be given to (b) part if no score for (c)		
	(a)	Derivation	_	
		(Equation like $\tau = m \times P$) $\tau = \hat{m}B\sin\theta / \tau = NIAB\sin\theta$	$2^{1}/_{2}$	
		Figure (give 1 score) Academy		
25	(b)	If number of turns doubles current sensitivity doubles as $\frac{nAB}{c}$		4
25		But voltage sensitivity remains constant since resistance		4
		doubles - $\frac{nAB}{cR}$	1 1/2	
		(definition of current sensitivity or voltage sensitivity can		
		give 1 score)		
	(a)	Minimum energy needed for the electron to escape from	1	
		metal surface	1	
	(b)	$hv = \emptyset_0 + \frac{1}{2} mv^2$ / Any such equation including $E = hv$		
26		(1 score)	1 1/2	4
		$\frac{1}{2}$ mv ² = hv - Ø ₀ = 0.344 eV / = 0.55 x 10 ⁻¹⁹ J	1 /2	
		(Solving without writing 1st equation can give full score)		
	(c)	$\frac{1}{2} mv^2 = eV_0$	1 1/2	

		$V_0 = \frac{0.55 \times 10^{-19}}{1.6 \times 10^{-19}} = 0.34 \text{ V}$		
		(equation only give 1 score , answer only 1 score)		
	(a)	Derivation of $\frac{R_2}{R_4} = \frac{R_1}{R_3} / \frac{R_1}{R_2} = \frac{R_3}{R_4}$		
		OR	4	
27		Any correct derivation using other symbols		5
		(figure only one mark)		
	(b)	Metre bridge	1	
	(a)	Any one factor like resistance ,capacitance ,inductance,	1	
		frequency of applied AC	1	
	(b)	Impedance diagram OR Phasor diagram OR cos Ø OR		
28		$\cos \emptyset = \frac{R}{Z}$	1	5
	(c)	Any correct equation 1 score		
		$Z = \sqrt{9 + 16} = 5 \text{ 0hm}$	3	
		(Answer only give 1 score, unit no recessary)		
	(a)	Width of band decreases from the center / any related	1	
		explanation	1	
	(b)	If yellow light is use! 15 and width increases OR the pattern	1	
		expands / any related explanation	1	
29	(c)	$X_n = \frac{n\lambda D}{d}$, $\lambda = \frac{X_{nd}}{nD} = \frac{10^{-2} \times 0.03 \times 10^{-2}}{4 \times 1.5} = 500 \text{ nm}$		5
		(Any correct related equation like $\beta = \frac{D\lambda}{d}$ give 1 score)	2	
		(if (d) part is not considered 3 score can be given to (c) part)		
	(d)	Any definition of limit of resolution	1	
	(a)	I – cut of region, II – active region, III – saturation region	1 1/2	
30	(b)	Region I	1/2	
	(c)	$\beta = \frac{I_c}{I_b} (1 \text{ score})$		5
		$I_{c} = \frac{2}{2000} = 1 \text{ mA}$	2	
		$I_b = \frac{I_c}{\beta} = \frac{1 mA}{100} = 10^{-5} A$		

	(for any correct equation for β give 1 score		
(4)	If part (d) is not correct give 3 score to (c)part)		
(d)	(if there is errors in previous parts of this question, working		
	of transistor with figure can give 2 score and 1 score if there		
	is figure only)	1	
	Forward biased emitter base junction send majority carriers		
	from emitter to base and reverse biased collector can collect		
	these majority carriers from base		

