SECOND YEAR HIGHER SECONDARY EXAMINATION APRIL 2021

SUBJECT: CHEMISTRY Qn. Code: SY 225

GII. Code. 31 223				
Qn.	Sub	Answer Key/Value Points	Scor	То
No.	qns.		е	tal
		Answer questions from 1 to 11. Each carries 2 scores.		
1.	(i)	(A) NaCl	1	
	(ii)	Like liquids, glass has a tendency to flow / since it is an amorphous solid/ in glass, the particles have only short range order.	1	2
2.	(i)	12	1	2
	(ii)	Total no. of voids = 3N mol or 3N x 6.022 x 10 ²³ voids	1	2
3.		The second independent of the second independent of the second independent of the second independent	2	2
4.	(i)	38% H ₂ SO ₄ solution or Sulphuric acid solution	1	
	(ii)	Dry cell/Mercury cell/button cell [Any one example required]	1	2
5.	. ,	If the order of a reaction is zero, it is called zero order reaction.	1	
		Or , it is the reaction in which the rate of the reaction is independent of the concentration of the reactants. Or , Example for zero order reaction. For a zero order reaction, the unit of rate constant is mol/L/s or mol L^{-1} s ⁻¹ .	1	2
6.	A.	Homogeneous catalysis	1	
0.	В.	Heterogeneous catalysis	1	2
7.	(i)	(D) Zinc blende	1	
, , .	(ii)	Distillation	1	2
8.	(i)	HNO ₃ /Nitric acid	1	
-	(ii)	Ostwald's process	1	2
9.	(i)	PCl ₃ reacts with moisture and form HCl gas/ due to the formation of hydrogen chloride gas. Or, the equation PCl ₃ + $3H_2O \rightarrow H_3PO_3 + 3HCl$	1	
	(ii)	Since in PCl ₅ , the axial bond length is greater than the equatorial bond length/ due to its unsymmetrical structure/due to the greater repulsion between axial bond pairs and equatorial bond pairs/due to its trigonal bipyramidal structure. [Any one reason]	1	2
10.	(i)	Potassiumtetrahydroxidozincate(II)	1	2
	(ii)	Magnesium (Mg)	1	

11.	(i)	CH ₃ -CH ₂ -CI/ Chloroethane/ Ethyl chloride	1	2
	(ii)	CH ₃ -CHI-CH ₃ / 2-Iodopropane/ Isopropyl iodide	1	

		Questions 12 to 29 carry 3 scores each.		
12.		A unit cell is the smallest portion of a crystal lattice which, when repeated in three dimension to generate an entire lattice. Or, it is the building block of a crystal. Number of atoms present per unit cell bcc: Here the particles are present at the corners of the cube and also one atom at the body centre. The number of atoms at the corner = $8 \times 1/8 = 1$ The number of atoms at the body-centre = 1 Therefore, total number of atoms in the unit cell = $1+1=2$ Fcc: Here the atoms are present at the corners and also at the centre of each faces. Number of corner atoms = $8\times1/8 = 1$ Number of face-centre atoms = $6\times1/2 = 3$ Therefore, total number of atoms = $1+3=4$	1 1	3
13.	(i)	Ferromagnetic substances	1	
	(ii)	Alignment of magnetic moments in a ferromagnetic substance:	1	3
		Alignment of magnetic moments in a ferrimagnetic substance:	1	3
14.		Henry's law states that at a constant temperature, the solubility of a gas in a liquid is directly proportional to the pressure of the gas. Or, the partial pressure of a gas in vapour phase is proportional to the mole fraction of the gas in the solution. Or, its mathematical form: p = K _H x (where p is the partial pressure of the gas, K _H is the Henry's law constant and x Is the mole fraction of the gas in the solution). Applications: Preparation of soda water, a condition known as <i>Bends</i> in Scuba divers, a medical condition known as <i>Anoxia</i> in people living at high altitudes. (Any 2 applications required)	2	3
15.	(i)	$E_{cell} = E^{0}_{cell} - \underline{2.303RT} \log \underline{[Zn^{2+}]}$ $2F \qquad \underline{[Cu^{2+}]}$ OR,	1	
		$E_{cell} = E_{cell}^0 - 0.0591 \log [Zn^{2+}]$ (at 298 K)		3
	(ii)	$\frac{1}{2} \frac{1}{\left[Cu^{2+}\right]}$ Conductivity and molar conductivity are related as: $\lambda m = 1000 \text{ k/M}$	1	3
		Here \hat{k} = 0.0248 S cm ⁻¹ and molarity, M = 0.2 M So λ m = 1000 x 0.0248/0.2 = 124 S cm ² mol ⁻¹	1	

16.	(i) (ii)	I is strong electrolyte and II is weak electrolyte. λ^0 m indicates the limiting molar conductivity or molar conductivity at zero concentration. By using Kohlrausch's law	1	3
	(iii)		1	
17.	(i)	$P_{Total} = P_{A0} + (P_{B0} - P_{A0})x_B$ Here $P_A{}^0 = 400$ mm of Hg, $P_B{}^0 = 600$ mm of Hg and $x_B =$	2	
		0.4 So, $P_{Total} = 400 + (600 - 400) \times 0.4 = 480 \text{ mm of Hg OR}$ Since $x_B = 0.4$, $x_A = 1 - x_B = 1 - 0.4 = 0.6$ $P_A = P_A^0$. $x_A = 400 \times 0.6 = 240 \text{ mm of Hg}$		3

		$P_B = P_B^0 \cdot x_B = 600 \times 0.4 = 240 \text{ mm of Hg}$		
		$P_{Total} = P_A + P_B = 240 + 240 = 480 \text{ mm of Hg (B)}$		
	(ii)	$\Delta H_{mix} = 0$	1	
18.	(i) (ii)	Half life period is the time taken for half of a reaction to complete. Or , it is the time taken for the concentration of a reactant is reduced to half of its initial concentration. For a first order reaction, the integrated rate law equation is $k = 2.303 \log[R]_0$ (1)	1	
		$t \qquad [R]$ When $t = t_{1/2}$, $[R] = [R]_0/2$		
		Substitute these values in the above equation, we get k = <u>2.30</u> 3 log[R] ₀ ——	2	3
		$t_{1/2}$ [R] ₀ /2 Or, $t_{1/2} = \underline{2.303} \log 2 = 2.303 \times 0.3010$		
		k k Or, t _{1/2} = 0.693 k		
19.	(i)	In chemisorption, the force of attraction between adsorbent and adsorbate is chemical bond. It is irreversible, highly specific, very high heat of adsorption, only unimolecular layer of adsorption occurs, its rate increases with increase in temperature etc. (<i>Only 2 characteristics required</i>).	2	3
	(ii)	Due to the greater surface area of finely divided substances/as the surface area increases, extend of adsorption also increases.	1	
20.	(i)	In calcination, the ore is heated in the absence or limited supply of air but in roasting, the ore is heated in presence of excess of air.	1	
	(ii)	Pig iron is the iron obtained from blast furnace. It contains about 4% C and smaller amounts of impurities. While wrought iron is the purest form of commercial iron. The	1	3
	(iii)	metallic compounds present in the earth crust are called minerals . A mineral from which a metal can be extracted conveniently and profitably is called ore .	1	

21.	(i)	Chromite ore/ FeCr ₂ O ₄	1	
	(ii)	First sodium chromate is acidified with sulphuric acid to produce sodium dichromate.		
		$2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$		
		Then the solution of sodium dichromate is treated with potassium chloride so that	2	3
		orange crystals of potassium dichromate crystallise out. Na ₂ Cr ₂ O ₇ + 2 KCl \rightarrow	2	
		$K_2Cr_2O_7 + 2 \text{ NaCl}$		
		[Either explanation or equation is required] (1 Score for each step)		
22.	(i)	A) Due to lanthanoid contraction/lanthanide contraction.	1	
		B) This is due to their large surface area and their ability to show variable		
		oxidation state.	1	3
	(ii)	The electronic configuration of M^{2+} (Z = 27) is [Ar]3d ⁷		5
		So the no. of unpaired electrons = 3	1	
		Spin only magnetic moment, $\mu_s = \sqrt{n(n+2)} = \sqrt{3(3+2)} = \sqrt{15} = 3.87$ BM		
23.	(i)	Reimer-Tiemann Reaction: Phenol when treated with chloroform in the presence of	1½	
		NaOH, followed by acidification, we get salicylaldehyde (o-hydroxybenzaldehyde).		
		Or, the equation:		3

	(ii)	OH CHCl ₃ + aq NaOH CHCl ₂ NaOH CHO H ⁺ Salicylaldehyde Intermediate Williamson's synthesis: Alkyl halide reacts with sodium alkoxide to form ether. This reaction is called Williamson's ether synthesis. R-X + R'-ONa \rightarrow R-O-R' + NaX Or, any correct example	1½	
24.	(i)	A. Propene reacts with water in the presence of acid as catalyst to form propan-2-ol. Or the equation:	1	
		CH ₃ -CH=CH ₂ + H ₂ O → H ⁺ → CH ₃ -CH(OH)-CH ₃ B. Ethanal when reduced using lithium aluminium hydride (LiAlH ₄) or sodium borohydride (NaBH ₄) or on catalytic hydrogenation, we get ethanol. CH ₃ -CHO + [H] → CH ₃ -CH ₂ OH Zymase	1	3
25	(ii)		1	
25.	(i) (ii)	(A) Tollens' test CH ₃ -CHO	1	
	(")	C_6H_5 -CHO (Benzaldehyde) is less reactive because of the less electrophilicity of the	1	3
		carbonyl carbon due to resonance. Or , the polarity of the carbonyl carbon in C_6H_5 -CHO is less/due to the presence of bulky phenyl group (steric hindrance).	1	

			1	
26.	(i)	Methanol and potassium formate		
		Or, the equation: 2 HCHO Conc. KOH CH ₃ -OH + H-COOK This		
		reaction is known as Cannizzaro reaction.	1½	
	(ii)	3-hydroxybutanal (β-hydroxybutyraldehyde) and but-2-enal (crotanaldehyde) Or ,		_
		the equation:		3
		2CH ₃ -CHO dil. NaOH CH ₃ -CH(OH)-CH ₂ -CHO Δ CH ₃ -CH=CH-CHO	1½	
		Ethanal 3-Hydroxybutanal But-2-enal		
		This reaction is known as Aldol reaction (Aldol condensation reaction).		
27.	(i)	Monosaccharides: Ribose, Fructose	1	
		Disaccharides: Maltose, Sucrose		
	(ii)	Starch is the storage polysaccharide of plants while glycogen is the storage	1	3
		polysaccharide of animals. Insulin and glucagon		
	(iii)			
28.	(i)	Vinyl chloride/Chloroethene/CH ₂ =CHCl. PVC is used for making pipes, rain coats, hand	1	
		bags, vinyl flooring etc. [Any one use is required]		
	(ii)	Tetrafluoroethene (CF ₂ =CF ₂). Teflon is used for making oil seals, gaskets and non-sticky	1	3
		cooking pans. [Any one use is required]		3
	(iii)	Adipic acid and hexamethylene diamine. Nylon 6,6 is used for making sheets, bristles	1	
		for brushes and in textile industry. [Any one use is required]		
29.	(i)	A. BHT (Butylated hydroxytoluene) is used as an antioxidant in food.	1	
		B. Saccharin is used as an artificial sweetener in food.		
	(ii)	Antidepressant drugs/Tranquilizers.		3
		E.g. Iproniazid, phenelzine, chlordiazepoxide, meprobamate, equanil etc. [Any		
		one example is required]		

		Questions 30 to 40 carry 4 scores each.		
30.	(i)	A. Schottky defect: It is the stoichiometric defect arising due to the missing of equal no. of anions and cations from the lattice site.	1	
		B. Frenkel defect: It is the stoichiometric defect arising due to the shifting of a cation from the lattice site to the interstitial site.	1	4
		C. f-centres: These are the electrons occupied at the anion vacancies or lattice sites.	1	4
	(ii)	(C) AgBr	1	
31.	(i)	Colligative properties are the properties which depend only on the number of solute particles and not on their nature. Molarmass (M_2) = w_2RT π V	2	
	(ii)	Here $w_2 = 1.26 \text{ g}$, $V = 400 \text{ cm}^3 = 0.4 \text{ L}$, $T = 300 \text{ K}$, $\pi = 2.57 \times 10^{-4} \text{ atm}$ and		
		$R = 0.0821 \text{ Latm } K^{-1} \text{mol}^{-1}.$		4
		So, $M_2 = 1.26 \times 0.0821 \times 300 = 30.19 \times 10^4 \text{ atm}$	2	
		2.57 x 10 ⁻⁴ x 0.4		

32.	(i)	In $H_2 - O_2$ fuel cells, hydrogen and oxygen gases are bubbled through porous carbon electrodes into concentrated aqueous sodium hydroxide solution. Catalysts like finely divided platinum or palladium metal are filled in the electrodes. <i>Or, the Diagram</i> :		
		Anode — Cathode Aqueous electrolyte Academy The electrode reactions are:	3	
	(ii)	$O_2(g)$ $P2H_2O(I)$ $Q12e^ Q2(g)$ for Youth $O_2(g) + 4OH^-(aq) \rightarrow 4H_2O(I) + 4e^-$ Overall reaction is: $O_2(g) + O_2(g) - O_2(g) - O_2(g)$ Cathode: Anode:	2	4
		The methods to prevent corrosion of metals are: a) By giving a non-metallic coating on the metal surface with paint, varnish etc. b) By coating the metal surface with electropositive metal like zinc, magnesium etc. c) By coating with anti-rust solution. d) By connecting the metal with a sacrificial electrode of another metal (like Mg, Zn, etc.) which corrodes itself but saves the iron object (sacrificial protection). [Any 2 methods required]		
33.	(i)	The Arrhenius equation is k = A.e ^{-Ea/RT}	1	
	(ii)	Or, logk = logA – Ea/2.303RT We know that, log $k_2/k_1 = \underline{Ea} [T_2 - T_1]$	2	
		Suppose $k_1 = x$, then $k_2 = 2x$ Then,	_	4
		log 2x = Ea [308 – 298]		
		x 2.303 x 8.314 298 x 308		
		Ea = $0.3010 \times 2.303 \times 8.314 \times 298 \times 308$ = 52897.78 J mol ⁻¹		
		10		

(iii)	Order	Molecularity		
	It is the sum of the powers of the	It is the total number of reactant species		
	concentration terms in the rate law	collide simultaneously in a chemical	1	
	expression	reaction		

		It is an experimental quantity		
		It can be zero or fractional It cannot be zero or fractional		
		(Any 2 required)		
34.	(i)	In lyophilic sols, the force of attraction between dispersed phase and dispersion medium is strong. E.g. Starch solution, gum, gelatin, starch, rubber etc in suitable dispersion medium. But in lyophobic sols, the force of attraction between dispersed phase and dispersion medium is weak. e.g. Arsenic sulphide (As ₂ S ₃) sol, sulpher sol and metal sols like gold sol, silver sol etc.	2	
	(ii)	Emulsions are of two types: I) Oil in water (O/W) type and II) Water in oil (W/O) type In oil in water type emulsion, oil is the dispersed phase and water is the dispersion medium. E.g. milk. In water in oil type emulsion, water is the dispersed phase and oil is the dispersion medium. E.g. butter and cream	2	4
35.	(i) (ii)	Leaching of alumina from Bauxite: Here the powdered ore is treated with a concentrated solution of NaOH at 473 − 523 K and 35 − 36 bar pressure. Alumina (Al ₂ O ₃) dissolves in NaOH to form sodium aluminate [2Na[Al(OH) ₄] leaving behind the impurities. Al ₂ O ₃ (s) + 2NaOH(aq) + 3H ₂ O(I) \rightarrow 2Na*Al(OH) ₄](aq) The aluminate in solution is neutralised by passing CO ₂ gas and hydrated Al ₂ O ₃ is precipitated. The solution is seeded with freshly prepared hydrated Al ₂ O ₃ which induces the precipitation. 2Na[Al(OH) ₄](aq) + CO ₂ (g) \rightarrow Al ₂ O ₃ .xH ₂ O(s) + 2NaHCO ₃ (aq) The hydrated alumina is filtered, dried and heated to give back pure alumina (Al ₂ O ₃). Al ₂ O ₃ .xH ₂ O(s) \rightarrow Al ₂ O ₃ (s) + xH ₂ O(g) [Either explanation or equation is required] Cryolite is added to lower the melting point of alumina and to increase the conductivity.	3	4
36.	(i)	Excess amount of Xe reacts with F ₂ at about 673 K and 1 bar pressure to produce XeF ₂ . Or, The equation: Xe (g) + F ₂ (g) 673K, 1 bar × XeF ₂ (s) (xenon in excess) Its structure is linear as follows:	1	
		F—Xe—F	1	4
	(ii)	(D) NeF ₂	1	
	(iii)	This is because the bond length in ICl is greater than that in I_2 /the bond length in inter halogen compounds are greater than that in halogens.	1	

37.	(i)	The different types of structural isomerism shown by co-ordination compounds are:						
	(ii)	1. Ionisation isomerism						
		2. Linkage isomerism		2				
		3. Solvate or hydrate isomerism						
		4. Co-ordination isomerism		2	4	ţ		
		This is because $[Fe(H_2O)_6]^{3+}$ is an outer orbital complex while $[Fe(CN)_6]^{3-}$ is an inner orbital						
		complex/ H ₂ O is a weak field ligand and hence electron pairing does not occur while CN ⁻ is a						
		strong field ligand and hence electron pairing occurs/ due to greater number of unpaired						
		electrons in $[Fe(H_2O)_6]^{3+}$ than that in $[Fe(CN)_6]^{3-}$.						
38.	(i)	S _N 1 Reaction	S _N 2 Reaction					
		Proceeds in 2 steps	Proceeds in a single step					
		An intermediate (carbocation) is formed	No intermediate is formed					
		Order of the reaction is 1	Order is 2					
		For optically active compounds, the reaction	For optically active compounds, the reaction					
		proceeds through retention of configuration.	proceeds through inversion of configuration.					
		The order of reactivity of alkyl halide is The	order of reactivity of alkyl halide is]	4	ļ		
		$3^{\circ} > 2^{\circ} > 1^{\circ}$ $1^{\circ} >$	$r \cdot 2^0 > 3^0$					
	(ii)			1				
	(iii)	[Any 2 differences are required]		1				
	, ,	2-chloropropane < 1-chlorobutane						
		Chloroform is used as a solvent, for the production of freon refrigerant, as an anaesthetic. [Any 1 use is required]						

Page 9

40.	(i)	(B) NH ₂		
			1	
	(ii)	The three types of amines are distinguished by Hinsberg test. Hinsberg's reagent is		
		Benzenesulphonyl chloride ($C_6H_5SO_2Cl$). a) Primary amines react with benzenesulphonyl chloride (Hinsberg's reagent) to		
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	
İ		form a precipitate which is soluble in alkali.		
				4
		Decree of the college		
		Benzene sulphonylchloride ethanamine N-ethylbenzenesulphonamide b) Secondary amines react with benzene sulphonyl chloride (Hinsberg's reagent) to		
		give a precipitate, which is insoluble in alkali.		
		Benzene sulphonylchloride N		
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		ethylethanamine N,N-diethylbenzenesulphonamide		
		c) Tertiary amines do not react with benzenesulphonyl chloride (Hinsberg's reagent).		
		%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%		

