Part III Physics SY 224

Qn	Scoring Indicators	Score	Total
No			Total
1	Magnitude of charges or charges, Square (1/2+1/2)		1
2	(II) Gauss Law in magnetism		1
3	(II) ultraviolet rays		1
4	$ \begin{array}{ccc} 1 & 1 & 1 \\ -=(n-1)(& & -) \\ f & R_1 & R_2 \end{array} $		1
5	polarization		1
6	$\lambda = \frac{h}{p} \text{ or } \lambda = \frac{h}{mv}$		1
7	13.6eV		1
8	4a ₀ OR n ² a ₀ OR four times		1
9	$1 \qquad Q \\ V = \times \frac{4\pi\varepsilon_0}{r} r \qquad -$	1	2
	$V=4 imes10^4\mathrm{V}$ (unit not necessary) or correct substitution	1	
	Statement or $dB\alpha$ 2	1	
10	$dB = \frac{\mu}{4\pi} \frac{dl \sin_2 \theta}{r}$ OR any correct form of equation	1	2
	OR equation only give two		
11	Figure Outstanding Guidance for Youth	1	2
	Wheatstone's bridge Balancing condition ($I_g = 0$) Or Wheatstone's equation	1	
12	$R = 40$ $= R = 2 \Omega$ $1 + 1 = 2$ $= = -$		2
13	Any two properties	2	2
	Definition of half life	1	
14	0.693	1	2

Part III F	Part III Physics		SY 224
	$T_{1/2} = \underline{\hspace{1cm}} \lambda$		
15	H =nI	1	
	2000A/m OR	1	2
	Direct answer without substitution or equation then also give 2 mark		
16	(a) Substance Q	1	- 2
16	(b)negative	1	
	di	1	
	E = L		
17	L= 4H	1	2
	OR		
	Equation +Substitution (with out answer)give 2 mark.		
	Direct answer without substitution or equation then also give 2 mark		
18	Ray diagram	1	2
10	Proof	1	7 2

	V_m	1	
	$I_m = $		
	R		_
19	$I_0 = 0.64A$ OR	1	2
	Equation for I_{rms} = $\frac{0}{\sqrt{2}}$ $I_m = {}_R{}^m$ give 1 mark each		
	Direct answer without substitution or equation then also give 2 mark		
20	Any two postulate or equation	2	2
21	OR gate	1	2
21	Correct truth table	1	
22	Eddy current	1	2
22	Any two applications	1	
	Definition of electric dipole moment or equation	1	
	P=2aq1	2	
	7.5 x 10 ⁻⁸ Cm – ve Z direction 1		
23			3
	(answer without direction also give 1 mark)		
24	Any two properties of electric field lines	2	3

Part III I	hysic	CS		SY 224
		q ₁ positive negative	1	
25		Correct derivation of energy stored either mathematically or graphically OR If any correct equation of energy give 1 mark	3	3
26		Any one difference between polar and non polar molecule One example each	2	- 3
27	А	Definition of dip or correct figure showing dip $ \label{eq:tau} $	$ \begin{array}{c c} 1\\ 1\overline{2}\\ \hline 1\\ 1\overline{2} \end{array} $	3
28		6Ω and 3Ω R = 10 Ω I = 2.4 A OR Equation of series or parallel combination give 1 mark (1/2 +1/2 =1)	1 1 1	3
29		Correct Derivation $B=\mu_0 nI$ give 3 score OR Figure 1 Amperes circuital law 1 Derivation 1		3

20		Circuit Diagram showing conversion	1	3
30		Explanation OR Equation	2] 3
31		Derivation of value of instantaneous current give 3 score OR Circuit diagram or phasor 1 Derivation 1 Final answer 1		3
	а	Displacement current	1	
32	b	$C = \underset{B}{\overset{E}{\longrightarrow}} OR C = \underset{B_0}{\overset{E}{\bigcirc}}$	1	3

	.	maicators		C) / C C C
Part III	Physic	B = $2.1 \times 10^{-8}T$	1	SY 224
			3	
33		Explanation with correct figure	3	3
		{Figure - 2 Equation - 1}	2	
34	a	$KE_{max} = h(\nu - \nu_0)$ any other form of equation	2	3
	b	Explanation of "Negative kinetic energy"	1	
	а	Figure of parallel combination	1	
35	b	Correct derivation of equivalent capacitance OR Equation	3	4
		only give 1 score		
36		Correct derivation of equation of $B = \frac{\mu_{0NIR}^2}{2(R^2 + X^2)^{\frac{3}{2}}}$ with figure give 4 score Academy		4
30		OR Figure 1 Biot -Savart Law 1		
37	а	Energy	1	
	b	E = Blv	1	
		E= 3.625 V	2	4
		OR		
		Unit not necessary Ans only or substitution only give 2 score		
			4	
20		Correct derivation of $2-n1=n2-n1$ with figure $v = u = R$		4
38		Figure 1		4
		Derivation 3		
20		Ray diagram	2	
39		$L = f_0 + f_e$	2	4
		Derivation of Snell's law		
40		Figure 2		4
40		Derivation 2		4
		(Equation or statement of Snell's law give 1 score)		
41	а	Figure (i)	1	
	b	Correct diagram 2	3	
		Explanation 1		4
		OR If explanation only is correct give 2 score OR correct waveform give 1		
		score		
		True	1	

Part III	Physi	cs		SY 224
	b	Statement of Gauss Law OR equation	2	
	С	Correct derivation with figure(answer only give 1 score .figure only give 1	2	
		score)		
	а	Εα l	2	
	b	Explain with correct circuit diagram 1	3	
40		$E_{\underline{1}}$ $l_{\underline{1}}$		_
43		$= 2$ $E_2 l_2$		5
		OR		
		If diagram only give 2 score		
	а	(i) mutual induction	1	
	b	(ii) Any one difference OR Figure of step-up ,step-down	1	
44	С	$V_{\underline{P}} N_{\underline{P}}$	2	5
		VS NS		
		$N_S = 400$	1	
		Correct ray diagram	2	
		Correct derivation	3	
		$r_1 + r_2 = A \tag{At}$		
		$d = i_1 + i_2 - A $		
		Answer (snells law)1		
45		OR		5
		$\frac{A+D}{2}$ or $i - d$ curve $OR r =$		
		= etc give 1 score utstanding Guidance for Youth		
		minimum deviation i =		
		A		

Part III Physics SY 224

